# **Physical Chemistry**

# Structure and vibrational spectra of mononitroalkanes

V. A. Shlyapochnikov,  $a^{\dagger}$  G. M. Khrapkovskii,  $b^{\star}$  and A. G. Shamov<sup>b</sup>

<sup>a</sup>N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
Fax: +7 (095) 135 5328. E-mail: shva@ioc.ac.ru
<sup>b</sup>Kazan State University,
68 ul. K. Marksa, 420015 Kazan, Russian Federation.
Fax: +7 (843 2) 36 2075. E-mail: shamov@dionis-kstu.bancorp

Structures and force fields for several mononitroalkane molecules were determined by *ab initio* quantum-chemical methods. The data obtained were used for calculation of the frequencies and modes of normal vibrations. Potentialities of different methods (RHF, MP2, and B3LYP) and basis sets for estimation of the structures and spectra were studied.

**Key words:** mononitroalkanes, quantum chemistry, molecular structure, force fields, vibrational spectra.

Although many researchers studied the structure of aliphatic nitro compounds, few experimental data<sup>1–4</sup> on the molecular structure of such compounds in the gas phase have been collected to date. The results of determination of the structure of molecules in the gas phase by two main methods, *viz.*, microwave spectroscopy (MW) and gas electron diffraction (ED), differ strongly in some cases. <sup>1–4</sup> \* Only nitromethane<sup>5</sup> and trinitromethane<sup>6</sup> have been studied in the condensed state among relatively simple compounds of this class.

At the same time, a great body of experimental spectra is available in the literature. However, their interpretation is often far from unambiguity. Explanation of spectral features is often based on analogies and researcher's intuition. As a result, data on only several reliably assigned frequencies of the whole massive of experimental results is used in practice. For nitro compounds, these are usually frequencies of antisymmetrical  $v_{as}(NO_2)$  and symmetrical  $v_s(NO_2)$  stretching vibrations of the nitro group.

Experimental data are usually insufficient and ambiguous, which impedes substantiated conclusions about specific features of individual structures and general structural and spectral regularities in the series of aliphatic nitro compounds in general and mononitroalkanes in particular. Therefore, studies of the structure and prop-

<sup>†</sup> Deceased.

<sup>\*</sup> The use of different experimental methods allows one to determine structural parameters with different physical senses. However, quantitative differences in bond lengths and angles, as a rule, are insignificant.

erties of these compounds by quantum-chemical methods, which provide reliable information, are of considerable interest. For example, it has recently been shown that the results of calculations of the structural parameters and spectral frequencies for nitromethane almost coincide with experimental data. Therefore, we can expect that the application of the theory to other nitro compounds would be justified. This assumption needed verification, which became one of the tasks of this work. Another task was to reveal the general structural and spectral regularities in the mononitroalkane molecules in the framework of a single approach.

In this work, we performed a series of quantumchemical calculations for relatively simple mononitroalkane molecules, first of all, for those for which experimental data are available.

#### **Calculation methods**

Main calculations by the RHF, MP2, and B3LYP methods in different basis sets were carried out on an SGI Power Challenge computer using the GAUSSIAN-94 program package<sup>8</sup> at the Center for Computation of Chemical Research of the Division of General and Technical Chemistry, Russian Academy of Sciences, at the Institute of Organic Chemistry, RAS. All stationary points found for the nitroalkanes were characterized by the Hesse matrix.

## **Results and Discussion**

**Molecular structure.** The results of quantum-chemical studies of the nitromethane molecule have been dis-

cussed in detail.<sup>7</sup> In this work, we present only our calculation data for the MeNO<sub>2</sub> structure by the B3LYP method in different basis sets. The task of these calculations was to reveal the influence of the basis on the determination accuracy of structural parameters.

The data in Table 1 show that this effect becomes small beginning from the 6-31G(d) basis set. For bond lengths (Å), changes are usually in the third decimal place, whereas for angles they are  $\leq$ 1°. Thus, the geometry of molecules of aliphatic mononitro compounds can presumably be estimated satisfactorily in the 6-31G(d) basis set.

The nitroethane molecule was the next object to be studied. The experimental MW  $^{10}$  and ED  $^{11}$  data for this molecule and the corresponding values calculated by different methods are presented in Table 2.

As can be seen in Table 2, the structural parameters of nitroethane obtained by the MW and ED methods somewhat differ. The greatest difference is observed for the C-N bond length, namely, 0.04 Å. The results of the B3LYP, RHF, and MP2 calculations in the 6-311++G(d,p) basis set also differ, although this difference is lower (0.024 Å). The results of RHF calculations are nearest to the experimental values (MW) followed by the MP2 and then B3LYP data. Comparison of the calculation with the ED results exhibits the qualitatively analogous situation, and only the difference between the theory and experiment is greater.

The calculated C—C bond length is the same for all three methods and differs from experiment (MW) by 0.026 Å. The N—O bond length, according to the B3LYP data, virtually coincides with experiment but it is some-

Table 1. Structure of the nitromethane molecule\*

| Parameter     |              |                 | B3LYP calcu | lation in diffe   | erent basis sets      |                    |                   | Experi-           |
|---------------|--------------|-----------------|-------------|-------------------|-----------------------|--------------------|-------------------|-------------------|
|               | 6-31<br>G(d) | 6-311<br>G(d,p) | cc-pvtz     | 6-311++<br>G(d,p) | 6-311++<br>G(3df,3dp) | 6-311++<br>G(df,p) | 6-311++<br>G(2dp) | ment <sup>9</sup> |
| Bond length/Å |              |                 |             |                   |                       |                    |                   |                   |
| C-H(1)        | 1.091        | 1.090           | 1.088       | 1.090             | 1.087                 | 1.090              | 1.089             | 1.089             |
| C-H(2)        | 1.088        | 1.086           | 1.084       | 1.086             | 1.084                 | 1.086              | 1.085             | 1.089             |
| C-H(3)        | 1.091        | 1.086           | 1.084       | 1.086             | 1.084                 | 1.086              | 1.085             | 1.089             |
| C-N           | 1.500        | 1.503           | 1.499       | 1.503             | 1.498                 | 1.501              | 1.498             | 1.489             |
| N-O(1)        | 1.226        | 1.220           | 1.218       | 1.221             | 1.218                 | 1.220              | 1.221             | 1.224             |
| N-O(2)        | 1.227        | 1.220           | 1.218       | 1.221             | 1.218                 | 1.220              | 1.221             | 1.224             |
| Angle/deg     |              |                 |             |                   |                       |                    |                   |                   |
| C-N-O         | 117.7        | 117.0           | 117.1       | 117.2             | 117.1                 | 117.2              | 117.2             | 117.4             |
| 0-N-0         | 126.0        | 126.0           | 125.8       | 117.2             | 125.7                 | 125.6              | 125.7             | 125.3             |
| H-C-N         | 108.4        | 106.7           | 106.7       | 106.5             | 106.5                 | 106.6              | 106.5             | 107.5             |
| H-C-N         | 107.2        | 108.0           | 108.1       | 108.0             | 108.1                 | 108.1              | 108.1             | 107.5             |
| H-C-N         | 107.1        | 108.0           | 108.1       | 108.0             | 108.1                 | 108.1              | 108.1             | 107.5             |
| H-C-H         | 112.2        | 112.9           | 112.9       | 113.0             | 113.0                 | 112.9              | 113.0             | 107.5             |
| H-C-H         | 112.0        | 110.6           | 110.4       | 110.5             | 110.4                 | 110.5              | 110.4             | 107.5             |
| Н-С-Н         | 109.7        | 110.5           | 110.4       | 110.5             | 110.4                 | 110.5              | 110.4             | 107.5             |

<sup>\*</sup> In the equilibrium conformation, one of the CHN planes is perpendicular to the CNO<sub>2</sub> plane.

**Table 2.** Structure of the nitroethane molecule\*

| Parameter                  | Experiment |                 | Calculation in      |       |           |  |
|----------------------------|------------|-----------------|---------------------|-------|-----------|--|
|                            | MW 10      | ED 11           | 6-311++G(d,p) basis |       | basis set |  |
|                            |            |                 | B3LYP               | RHF   | MP2       |  |
| Bond length/Å              |            |                 |                     |       |           |  |
| C-C                        | 1.540      | _               | 1.514               | 1.514 | 1.514     |  |
| C-N                        | 1.500      | $1.46 \pm 0.02$ | 1.523               | 1.499 | 1.507     |  |
| N-O(1)                     | 1.220      | $1.21\pm0.02$   | 1.220               | 1.184 | 1.230     |  |
| N-O(2)                     | 1.220      | $1.21\pm0.02$   | 1.222               | 1.188 | 1.230     |  |
| Angle/deg                  |            |                 |                     |       |           |  |
| C-N-O(1)                   | 116.5      | _               | 118.6               | 118.8 | 118.6     |  |
| C-N-O(2)                   | 116.5      | _               | 116.0               | 115.9 | 115.9     |  |
| 0-N-0                      | 127.0      | 127.5           | 125.5               | 125.3 | 125.5     |  |
| C-C-N                      | _          | _               | 107.7               | 113.6 | 112.9     |  |
| Symmetry group of molecule | $C_s$      | $C_s$           | $C_s$               | $C_1$ | $C_1$     |  |

<sup>\*</sup> Here and in Tables 3 and 4 we did not include the data on the C—H bond lengths and H—C—H angles.

what overestimated in MP2 and strongly underestimated in RHF. The O-N-O angle is the same being determined from the MW and ED data, and the values calculated by different methods are close. The difference between the theory and experiment is  $\sim 1.5^{\circ}$ . For the other angles, it is difficult to compare the theory and experiment because the ED data are insufficient.

For the  $\mathrm{Pr^iNO_2}$  molecule, the bond lengths obtained by the MW  $^{12}$  and ED  $^{13}$  methods also somewhat differ (Table 3). The maximum difference for the C—C bond is 0.015 Å. The difference is somewhat smaller for the C—N bond and minimum (0.008 Å) for the N—O bond. The scatter of calculated values for the C—C and C—N bonds is small and close by the order of magnitude to similar data for nitroethane. The situation is somewhat

Table 3. Structure of the 2-nitropropane molecule

| Parameter         | Experiment        |         | Calculation in |         |           |  |
|-------------------|-------------------|---------|----------------|---------|-----------|--|
|                   | MW 12             | ED 13   | 6-311++        | G(d,p)  | basis set |  |
|                   |                   |         | B3LYP          | RHF     | MP2       |  |
| Bond length/Å     | 1                 |         |                |         |           |  |
| C(1)-C(2)         | $1.533 \pm 0.006$ | 1.518(1 | 0) 1.52:       | 5 1.523 | 1.522     |  |
| C-N               | $1.508\pm0.018$   | 1.518(1 | 0) 1.532       | 2 1.506 | 1.507     |  |
| N-O               | $1.218\pm0.015$   | 1.226(2 | ) 1.222        | 2 1.187 | 1.233     |  |
| Angle/deg         |                   |         |                |         |           |  |
| C-N-O             | 116.8±1.5         | 117.3(0 | .2) 117.4      | 117.4   | 117.3     |  |
| 0-N-0             | _                 | 125.4(0 | .3) 125.2      | 2 125.1 | 125.3     |  |
| C-C-N             | $108.9 \pm 1.7$   | 109.2(0 | .9) 108.:      | 5 108.6 | 108.4     |  |
| C-C-C             | _                 | 113.5(1 | .7) 113.       | 7 113.8 | 113.1     |  |
| N-C-H             | _                 | 106.4(6 | .1) 103        | 3 —     | _         |  |
| Symmetry          | $C_s$             | $C_1$   | $C_s$          | $C_s$   | $C_s$     |  |
| group of molecule |                   |         |                |         |           |  |

**Table 4.** Structure of the 2-methyl-2-nitropropane molecule

| Parameter                  | Experiment,<br>ED <sup>13</sup> | Calculation in $6-311++G(d,p)$ basis set |       |       |  |
|----------------------------|---------------------------------|------------------------------------------|-------|-------|--|
|                            |                                 | B3LYP                                    | RHF   | MP2   |  |
| Bond length/Å              |                                 |                                          |       |       |  |
| C(1)-C(2)                  | 1.533(15)<br>[1.530±0.02]*      | 1.533                                    | 1.530 | 1.526 |  |
| C-N                        | 1.533(15)                       | 1.561                                    | 1.529 | 1.521 |  |
| N-O(1)                     | 1.240(2)                        | 1.222                                    | 1.188 | 1.243 |  |
| N-O(2)                     | 1.240(2)                        | 1.220                                    | 1.186 | 1.243 |  |
| Angle/deg                  |                                 |                                          |       |       |  |
| C-N-O(1)                   | _                               | 116.6                                    | 116.7 | 116.5 |  |
| C-N-O(2)                   | _                               | 118.6                                    | 118.9 | 119.0 |  |
| 0-N-0                      | 122.2(0.6)                      | 124.7                                    | 124.5 | 124.5 |  |
| C-C-N(1)                   | _                               | 106.0                                    | 106.3 | 106.3 |  |
| C-C-N(2)                   | _                               | 108.9                                    | 109.3 | 109.1 |  |
| C-C-C(1)                   | 110.9(1.1)                      | 111.9                                    | 111.5 | 111.7 |  |
| C-C-C(2)                   | 110.9(1.1)                      | 111.7                                    | 111.7 | 111.4 |  |
| Symmetry group of molecule | $C_1$                           | $C_s$                                    | $C_s$ | $C_s$ |  |

<sup>\*</sup> MW.14

worse for the N-O bond length, which is noticeably underestimated in the RHF method. The experimental and calculated angles are, as a whole, in good accordance.

The MW experimental data for the 2-methyl-2-nitropropane are incomplete. 14,15 Therefore, we compared the ED results and calculation (Table 4). As can be seen, the C—C and C—N bond lengths are most successfully reflected by the RHF calculation, and the MP2 method is optimum for N—O. These methods give approximately the same description for bond angles.

Consideration of all obtained values (including the parameters of the  $MeNO_2$  molecule) suggests that the accuracy of calculation of the geometric parameters of the mononitroalkane molecules by the modern quantum-chemical methods is close to that of the experimental determination. Thus, experimental data can be supplemented by calculation results.

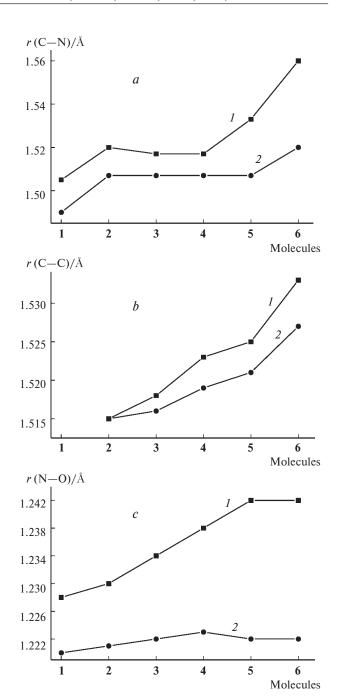
Moreover, different experimental methods give structural parameters with different physical senses. Therefore, calculation methods for determination of the equilibrium structure have certain advantages in analysis of the structural regularities.

We also calculated the molecular structures of several nitro compounds for which experimental data are lacking, namely, Pr<sup>n</sup>NO<sub>2</sub> and Bu<sup>n</sup>NO<sub>2</sub> (Table 5). The latter molecules required rotamerism to be taken into account. *trans*-Isomers turned out to be more stable. The main structural parameters are either the same as those for the previously studied molecules or differ insignificantly.

All calculation data for the molecular structures were considered together. Figure 1 illustrates the general regu-

**Table 5.** Calculations of the structures of the *n*-nitropropane and *n*-nitrobutane molecules by the B3LYP [6-31G(d)] method

| Parameter     | trans-Pr <sup>n</sup> NO <sub>2</sub> | trans-Bu <sup>n</sup> NO <sub>2</sub> |
|---------------|---------------------------------------|---------------------------------------|
| Bond length/Å |                                       |                                       |
| N-O           | 1.227                                 | 1.227                                 |
| N-O           | 1.227                                 | 1.227                                 |
| C-N           | 1.515                                 | 1.516                                 |
| C-C(1)        | 1.521                                 | 1.520                                 |
| C-C(2)        | 1.534                                 | 1.537                                 |
| C-C(3)        | _                                     | 1.532                                 |
| Angle/deg     |                                       |                                       |
| C-N-O(1)      | 118.5                                 | 118.5                                 |
| C-N-O(2)      | 116.0                                 | 115.9                                 |
| 0-N-0         | 125.5                                 | 125.5                                 |
| C-C-N         | 113.8                                 | 113.9                                 |
| C-C-C(1)      | 111.0                                 | 111.3                                 |
| C-C-C(2)      | _                                     | 112.4                                 |


larities in the mononitroalkane structures by the C-N, C-C (C-C is the closest to the nitro group), and N-O bond lengths. The diagrams show (see Fig. 1) that changes in the bond lengths in the mononitroalkane series are small. The maximum of changes is in the C-N bond, being of at most 0.06 Å, mainly in the case of the strongly sterically hindered Bu<sup>t</sup>NO<sub>2</sub> molecule. We assume that the C-N bond elongation is due to the steric effect.

The bond angles of molecules in the considered series of compounds change insignificantly.

Based on this consideration, we conclude that the structural parameters of the nitro groups and their nearest environment in the mononitroalkane molecules are to some extent conservative. Thus, the structures of other compounds of this class can be predicted with a high probability. The main structural differences are determined by the conformational peculiarities of internal rotation barriers about the C—N and C—C bonds. Experiments and additional calculations should be performed to reveal these questions.

**Spectra of molecules.** The authors of a recent work used nitromethane as example to show the advantages of the B3LYP method in vibrational spectroscopy over other quantum-chemical methods. The B3LYP method predicts frequencies in the vibrational spectrum with an average error of ~2% without the use of any scaling factors of the force fields.<sup>7</sup>

In continuation of quantum-chemical studies, we first considered the methodological aspects of various calculation approaches to determination of frequencies in vibrational spectra of aliphatic nitro compounds.\*



**Fig. 1.** Diagram for changing C-N (a), C-C (b), and N-O (c) bond lengths in the molecules of aliphatic nitro compounds  $MeNO_2$  (1),  $EtNO_2$  (2),  $Pr^nNO_2$  (3),  $Bu^nNO_2$  (4),  $Pr^iNO_2$  (5), and  $Bu^iNO_2$  (6): calculations by B3LYP (1) in the 6-311++G(d,p) (1, 2, 5, 6) and 6-31G(d) (3, 4) basis sets and MP2/6-311++G(d,p) (2) method.

The main objects of the study were  $MeNO_2$ ,  $EtNO_2$ ,  $Pr^iNO_2$ , and  $Bu^tNO_2$ . These compounds were chosen because they have been characterized by the sufficient structural and spectral data.

**Nitromethane.** Using the nitromethane molecule, we continued the methodological studies, namely, revealed

 $<sup>^{*}</sup>$  We have previously  $^{15-18}$  shown that nitramines and nitrobenzene require the introduction of scaling factors to be calculated by the RHF and MP2 methods.

**Table 6.** Average  $(\Delta v_{av})$  and maximum  $(\Delta v_{max})$  errors of calculations of the frequencies for nitromethane in different basis sets (B3LYP)\*

| Basis             | $\Delta v_{av}$ | $\Delta v_{max}$ |
|-------------------|-----------------|------------------|
|                   | 9               | %                |
| 6-311++G(2dp)     | 1.84            | 3.70             |
| 6-311++G(df,p)    | 2.02            | 3.99             |
| 6-311++G(d,p)     | 2.15            | 4.00             |
| 6-311++G(3df,3dp) | 2.35            | 4.02             |
| cc-pvt2           | 2.20            | 3.85             |
| 6-311G(d,p)       | 2.34            | 4.22             |
| 6-31G(d)          | 3.14            | 6.21             |

<sup>\*</sup> From 14 frequencies ignoring the torsion vibration.

the influence of the basis set on the accuracy of determination of spectral frequencies. The main method used was B3LYP.

Some results of calculations are presented in Table 6, viz., average  $(\Delta v_{av})$  and maximum  $(\Delta v_{max})$  errors of calculation of the nitromethane frequencies by the B3LYP method in different basis sets.

As follows from Table 6, since some step extension of the basis set looses efficiency. The best result was obtained in the 6-311++G(2dp) basis set:  $\Delta v_{av} = 1.84\%$ ,  $\Delta v_{max} = 3.7\%$ . The last value concerns the frequencies of stretching C—H vibrations. The error in the frequency of the stretching antisymemtrical vibration  $v_{as}(NO_2)$  is also significant.

The frequencies obtained in each particular variant of calculation somewhat differ. The differences are due to slight differences in the force constants. For example, the diagonal force constant of the N—O bond ( $F_{\rm NO}$ ) is 10.309 and 10.892 in the (6-311++G(2dp)) and 6-31G(d) basis sets, respectively. It was found that such differences virtually have no effect on the vibration mode, and the 6-31G(d) basis set suffice to make spectral assignments.

The  $v_{as}(NO_2)$  frequency can serve as a tentative criterion of goodness for spectra of the nitro compounds (Fig. 2). This frequency smoothly changes with the basis set change. In experiment for MeNO<sub>2</sub>  $v_{as}(NO_2) = 1584 \text{ cm}^{-1}$ , and in calculations it varies from ~1607 to 1689 cm<sup>-1</sup>. Such a regularity is not observed for other frequencies, especially for the frequency of the torsion vibration of the C–NO<sub>2</sub> group ( $\tau_{NO_2}$ ). Note that in the MeNO<sub>2</sub> molecule the rotation about the C–N bond is virtually free, the barrier is ~6 cal mol<sup>-1</sup>, and  $\tau$  should be lower than 5 cm<sup>-1</sup>. It is overestimated in all variants of calculation.

**Nitroethane.** The problem of interpretation of the spectrum was primary for nitroethane, unlike nitromethane. Quantum-chemical studies of this nitroalkane have not been performed to date. The experimental spec-

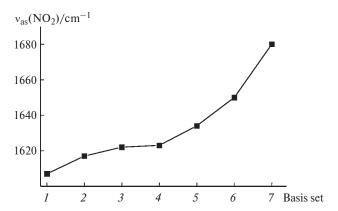



Fig. 2. Diagram for the change in the frequency of the stretching asymmetrical vibration  $v_{as}(NO_2)$  for nitromethane calculated (B3LYP method) in different basis sets: 6-311++G(2dp) (*I*), 6-311++G(df,p) (*2*), 6-311++G(d,p) (*3*), 6-311++G(3df,3dp) (*4*), cc-pvtz (*5*), 6-311G(d,p) (*6*), and 6-31G(d) (*7*).

tra of EtNO<sub>2</sub> were studied several times (see, e.g., Refs. 19–21), including those for its isotopomers. The positions of intense bands in the spectra of the EtNO<sub>2</sub> and MeNO<sub>2</sub> molecules are close. Some distinctions were found for medium and weak bands. The available experimental data and analogies to the spectra of nitromethane were used for the assignment of vibrational frequencies of the EtNO<sub>2</sub> molecule. Based on calculation of the frequencies and modes of normal vibrations, the authors<sup>19</sup> proposed the quantitative interpretation of this spectrum. However, although this interpretation reflects the apparent similarity of the spectra of MeNO<sub>2</sub> and EtNO<sub>2</sub>, it cannot be considered rigid and reliable. In this work, we used alternative methods to prove the interpretation of the spectra.

We determined the force fields of the nitroethane molecule by the RHF, MP2, and B3LYP methods. The frequencies and modes of vibrations for EtNO<sub>2</sub>, CD<sub>3</sub>CH<sub>2</sub>NO<sub>2</sub>, and C<sub>2</sub>D<sub>5</sub>NO<sub>2</sub> were calculated using the quantum-chemical force fields and structural data. As expected, B3LYP [6-311++G(d,p)] gives a good agreement between the theory and experiment for the spectra of nitroethane and its isotopomers. Some data obtained are presented in Table 7. The average deviation of the theory from experiment ( $\Delta v_{av}$ ) is ~2%. The MP2 and RHF methods exhibit worse results on frequencies and require the use of scaling factors. The frequencies of nitroethane were assigned from analysis of the vibration modes and potential energy distribution (PED) over vibrations, which were obtained using the quantum-chemical force fields. Despite the differences between these fields (RHF, MP2, and B3LYP in the same basis), the modes of the corresponding vibrations differ insignifi-

The use of calculated intensities for the assignment of spectral frequencies is of doubtful value. A small set of

**Table 7.** Spectra of  $C_2H_5NO_2$  and  $C_2D_5NO_2^*$ 

|            | $C_2H_5NO_2$         |      |                                           | $C_2$    | D <sub>5</sub> NO <sub>2</sub> |                           |       |          |
|------------|----------------------|------|-------------------------------------------|----------|--------------------------------|---------------------------|-------|----------|
| Experiment | xperiment (gas) Calc |      | Calculation** Expe                        |          | Calculation**                  |                           | Calcu | lation** |
| IR         | Raman                | ν    | PED                                       | IR (gas) | ν                              | PED                       |       |          |
| 1576 v.w   | 1556 dp              | 1619 | 91 NO                                     | 1568 v.s | 1612                           | 94 NO                     |       |          |
| 1471 m     | 1463 dp              | 1500 |                                           | 1379 s   | 1412                           | 74 NO, 12 CN              |       |          |
| 1448 m     | 1437 dp              | 1485 |                                           | 1188 m   | 1211                           | 46 CC                     |       |          |
| 1448 m     | •                    | 1477 |                                           | 1080 v.w | 1092                           |                           |       |          |
| 1396 s     | 1394 p               | 1430 | 27 NO                                     | 1060 m   | 1080                           |                           |       |          |
| 1367 s     | 1366 p               | 1402 | 57 NO                                     | 1051     | 1069                           |                           |       |          |
| 1328 w     | 1329 p               | 1353 |                                           | 1048***  | 1066                           |                           |       |          |
| 1264 w     | 1264 dp              | 1297 |                                           | 935 w    | 980                            |                           |       |          |
| 1136 m     | 1130 dp              | 1148 |                                           | 918 w    | 969                            | $25 \rho NO_2$            |       |          |
| 1102 m     | 1100 p               | 1120 | 49 CC                                     | 880 m    | 940                            | 14 CN                     |       |          |
| 995 m      | 994 dp               | 1002 | 44 CC, 17 CN                              | 784 m    | 891                            | 33 CN, 30 ONO             |       |          |
| 876 s      | 876 p                | 883  | 31 CN, 29 ONO                             | 629      | 777                            | 19 CN                     |       |          |
| 805 w      | •                    | 815  | 11 ρ NO <sub>2</sub>                      | 581      | 637                            | 26 ρNO <sub>2</sub>       |       |          |
| 616 m      | 615 p                | 636  | 49 CN, 22 CNO,<br>12 ONO, 18 CCN          |          | 583                            | 52 CN, 10 CNO             |       |          |
| 583        |                      | 586  | 69 ρNO <sub>2</sub>                       | 476      | 504                            | 37 ρNO <sub>2</sub>       |       |          |
| 497 w      | 494 dp               | 508  | 49 CNO, 14 CN,                            | 260 w    | 481                            | 54 CNO, 13 CN,            |       |          |
| 127 11     | 15 1 <b>u</b> p      | 200  | 11 CCN                                    | 200 11   | 101                            | 11 CCN                    |       |          |
| 285 w      | 295 dp               | 289  | 62 CCN, 36 CNO                            |          | 263                            | 53 CCN, 28 CNO            |       |          |
| 221 w      | 275 <b>u</b> p       | 219  | 02 0011, 50 0110                          |          | 160                            | 33 0011, 20 0110          |       |          |
| 221 "      |                      | 18   | 55 τNO <sub>2</sub> , 29 ρNO <sub>2</sub> |          | 14                             | 53 τ $NO_2$ , 20 ρ $NO_2$ |       |          |

<sup>\*</sup> Hereafter frequencies in cm<sup>-1</sup>, PED in %; s is strong, m is medium, w is weak band, v is very, p is polarized, dp is depolarized line. Stretching vibrations of C-H and C-D are not considered. Only the contributions from the C-NO<sub>2</sub> group and C-C bond are presented.

experimental intensities for several bands in the IR spectra of nitroethane solutions was available. Comparison of the theory (B3LYP) and experiment shows that these sets of magnitudes change in parallel (Table 8), although intensities for vapors and solutions, of course, can noticeably differ. For the RHF and MP2 methods, the agreement between the theory and experiment for

**Table 8.** Integral intensities (*A*) of some bands in the IR spectra of nitroethane\*

| Band | Experiment <sup>19</sup> |      | Calculation |            |
|------|--------------------------|------|-------------|------------|
|      | ν                        | A* _ | (B3LYP/6-3  | 11++G(d,p) |
|      |                          |      | ν           | A          |
| 1    | 1568                     | 100  | 1619        | 100        |
| 2    | 1410                     | 19   | 1430        | 24         |
| 3    | 1382                     | 17   | 1402        | 18         |
| 4    | 882                      | 7    | 883         | 3          |
| 5    | 617                      | 2    | 636         | 8          |
| 6    | 499                      | 6    | 508         | 3          |

<sup>\*</sup> Integral intensities were measured in solutions: bands 1, 2, and 3, in CH<sub>2</sub>Cl<sub>2</sub>; 4, in CHBr<sub>3</sub>; 5 and 6, in MeCN.

the intensities of the same bands of nitroethane is still worse.

For simplification of the spectra interpretation and convenience of analysis, we separated from the whole set of fundamental bands of nitroethane the bands that involve, to a great extent, the parameters of the C-NO<sub>2</sub> group and C-C bond (see Table 7). Comparison of the separated frequencies of the nitro group in nitroethane with those in nitromethane<sup>7</sup> shows their close analogy.

However, a closeness in positions of the bands of the nitro groups in nitromethane and nitroethane does not imply their analogy in shape. Analysis of changes in the shapes and PED of vibrations of the MeNO<sub>2</sub> and EtNO<sub>2</sub> molecules showed more or less regularity for all stretching vibrations of the C–NO<sub>2</sub> group, although the characters of vibrations of C–N in the MeNO<sub>2</sub> and EtNO<sub>2</sub> molecules somewhat differ. For example, for the EtNO<sub>2</sub> molecule two frequencies, viz., 883 and 636 cm<sup>-1</sup>, can formally be assigned to v(CN). According to PED, the contribution of the C–N coordinate to v = 636 cm<sup>-1</sup> is greater than that to v = 883 cm<sup>-1</sup> in the EtNO<sub>2</sub> molecule, whereas for MeNO<sub>2</sub> this contribution to similar vibrations is the same. Within the same interpretation of

<sup>\*\*</sup> B3LYP/6-311++G(d,p).

<sup>\*\*\*</sup> For the liquid state.

the spectra, we assign the frequency at  $883~\rm cm^{-1}$  to the stretching C–N vibration, and  $636~\rm cm^{-1}$  can be attributed to the bending CNO vibration in the EtNO<sub>2</sub> molecule. The stretching C–C vibration can be assigned for the EtNO<sub>2</sub> molecule, its identification for MeCD<sub>2</sub>NO<sub>2</sub> is less reliable, and it is not identified at all for C<sub>2</sub>D<sub>5</sub>NO<sub>2</sub>. In the latter case, this vibration is distributed over different coordinates.

The assignment of bending vibrations of the  $C-NO_2$  groups is complicated. Unlike  $MeNO_2$ , in  $EtNO_2$  deformation of these angles participate efficiently in many vibrations (Fig. 3). Thus, some bending vibrations of the nitromethane and nitroethane molecules substantially differ in both the modes and PEDs.

**n-Nitropropane and n-nitrobutane.** No detailed spectral data for the nitropropane and nitrobutane molecules in the gas phase were available. Therefore, we restricted our calculations by the 6-31G(d) B3LYP basis set and examined only the frequencies with the maximum participation of the parameters of the nitro group.

The calculation results showed that the frequencies of stretching vibrations are somewhat overestimated. Among the stretching C—N vibrations, two bands for each nitroalkane, which were difficult to distinguish, were assigned. For  $PrNO_2 v = 941 \text{ cm}^{-1}$ , PED is 28% CN and 911 cm<sup>-1</sup>, PED is 25% CN. A similar situation is observed for BuNO<sub>2</sub>.

Bending vibrations of the nitro groups of the  $PrNO_2$  and  $BuNO_2$  molecules are in the standard region for

nitroalkanes and somewhat differ in frequencies from those of nitroethane. For example, for the first molecule these values are 738, 642, 471, and 18 cm<sup>-1</sup>, whereas for the second molecule they are 732, 638, 488, and 17 cm<sup>-1</sup>.

**2-Nitropropane and 2-methylnitropropane.** We also studied the molecules of branched nitroalkanes. Their spectra have previously been studied. <sup>12,15</sup> However, their complete interpretation is very complicated and barely possible even when good experiment and the results of classical calculations of frequencies and modes of normal vibrations are available. Therefore, in this work we performed quantum-chemical calculations of the force fields. The frequencies of vibrational spectra of the Pr<sup>i</sup>NO<sub>2</sub> and Bu<sup>t</sup>NO<sub>2</sub> molecules were calculated using the calculated force fields.

The calculations were performed by the RHF, MP2, and B3LYP methods in the 6-311++G(d,p) basis set. As follows from analysis of the results, The B3LYP method gives the best agreement of the theory and experiment for these molecules. The average deviation of the calculated frequencies from experiment ( $\Delta v_{av}$ ) is ~2.5%. The use of results obtained by the RHF and MP2 methods without force field scaling is inefficient. A great number of frequencies (some of which are close to each other) of relatively large molecules  $Pr^{i}NO_{2}$  and  $Bu^{i}NO_{2}$  impede the comparison of the theory and experiment. This conclusion is clearly illustrated by the data in Tables 9 and 10 containing the results of frequency calculations using the RHF and B3LYP methods for the  $Pr^{i}NO_{2}$  molecule

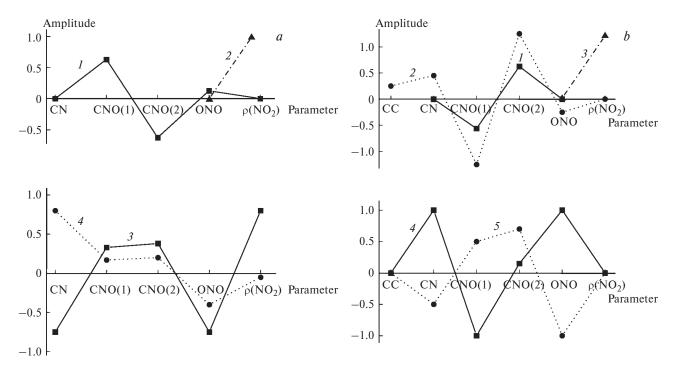



Fig. 3. Diagram of some vibration modes for the MeNO<sub>2</sub> (a) and EtNO<sub>2</sub> (b) molecules; contributions of natural coordinates to vibrations of the frequencies: a, 482 (I), 612 (2), 662 (3), and 925 cm<sup>-1</sup> (4); b, 289 (I), 508 (2), 586 (3), 636 (4), and 883 cm<sup>-1</sup> (5).

**Table 9.** Spectra of Pr<sup>i</sup>NO<sub>2</sub>

| Experiment <sup>12</sup> (gas) |         | Calcul | ation in | 6-311++G(d,p) basis         |
|--------------------------------|---------|--------|----------|-----------------------------|
| IR                             | Raman   | RHF    | ]        | B3LYP                       |
|                                |         | ν      | ν        | PED                         |
| 1571 v.s                       | 1555 w  | 1816   | 1617     | 86 NO                       |
| 1478 s                         | 1477 s  | 1668   | 1514     |                             |
| 1466 s                         | 1466* w | 1627   | 1498     |                             |
| 1456 s                         | 1454 m  | 1615   | 1490     |                             |
| 1444* m                        | 1445 w  | 1607   | 1484     |                             |
| 1402 s                         | 1402 w  | 1601   | 1437     | 26 NO, 6 CNO                |
| 1378 s                         | 1394 s  | 1546   | 1403     |                             |
| 1361 s                         | 1361 m  | 1535   | 1395     | 43 NO, 10 CNO,<br>5 CN      |
| 1325* w                        | 1320 w  | 1482   | 1361     |                             |
| 1306 m                         | 1306 m  | 1468   | 1328     |                             |
| 1183 w                         | 1184 w  | 1304   | 1201     |                             |
| 1140 m                         | 1134* m | 1243   | 1148     |                             |
| 1106 m                         | 1107 s  | 1230   | 1122     | 12 CCN, 6 CN                |
|                                | 957 w   | 1035   | 962      |                             |
| 941 v.w                        | 941* w  | 1025   | 951      |                             |
| 906 w                          | 902 v.w | 1015   | 906      | 21 CN, 15 CNO               |
| 851 s                          | 851 s   | 936    | 861      | 46 CNO, 24 CC               |
| 724 v.w                        |         | 841    | 743      | $71 \rho NO_2$              |
| 621 m                          | 620 v.w | 706    | 633      | 31 CCN, 24 CN,<br>21 CNO    |
| 528 m                          | 524 s   | 579    | 526      | 39 CNO, 22 CN               |
| 313 w                          |         | 361    | 339      | 14 CNO                      |
| 270 w                          | 272* w  | 326    | 302      | 54 CCN, 21 CNO,<br>7 CN     |
| 264 w                          |         | 289    | 264      | 64 CCN, 21 ρNO <sub>2</sub> |
|                                | 250 v.w | 269    | 250      |                             |
| 238 w                          | 233 v.w | 231    | 218      |                             |
|                                |         | 43     | 35       | $63 \text{ TNO}_2$          |

<sup>\*</sup> Spectra for the liquid state.

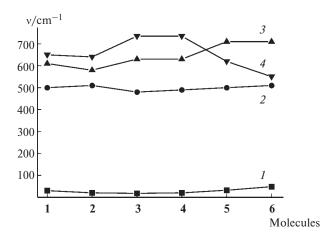
and MP2 and B3LYP for Bu<sup>t</sup>NO<sub>2</sub>. Based on analysis of the vibration modes and PED, we assigned all fundamental vibrational frequencies for the 2-nitropropane and 2-methylnitropropane molecules. The results obtained for frequencies of the nitro groups are presented in Tables 9 and 10.\*

Comparison of the calculation results for the PriNO<sub>2</sub> and ButNO<sub>2</sub> molecules to analogous data for MeNO<sub>2</sub> and EtNO<sub>2</sub> showed that the character of the stretching N—O vibrations changed slightly in this series of compounds. The situation for the stretching C—N vibrations is worse because the involvement of the C—N coordinate in various vibrations, including the stretching C—N vibration itself, noticeably changes. For example, the band at 523 cm<sup>-1</sup> in the spectrum of ButNO<sub>2</sub> can formally be assigned to the stretching C—N vibration be-

Table 10. Spectra of the Bu<sup>t</sup>NO<sub>2</sub> molecule

| Experimen | it <sup>13</sup> (gas) C | alculatioi | n in 6-311 | ++G(d,p) basis set   |
|-----------|--------------------------|------------|------------|----------------------|
| IR        | Raman                    | MP2        | B3LYP      | PED                  |
| 1563 v.s  | 1553 w                   | 1784       | 1605       | 93 NO                |
| 1502* m   |                          | 1581       | 1522       |                      |
| 1485 m    |                          | 1560       | 1501       |                      |
| 1467 s    |                          | 1559       | 1497       |                      |
| 1457* m   |                          | 1550       | 1491       |                      |
| 1446* m   | 1452** m                 | 1543       | 1484       |                      |
| 1423* w   |                          | 1535       | 1472       |                      |
| 1408 m    | 1408 w, p                | 1488       | 1444       | 20 NO, 2 CN,<br>2 CC |
| 1377 s    | 1373** s, p              | 1458       | 1407       | 8 CC, 7 NO           |
| 1364* m   | 1362* w                  | 1449       | 1401       | 10 CC                |
| 1360 s    | 1350 m, p                | 1396       | 1386       | 70 NO                |
| 1266*     | 7.1                      | 1337       | 1281       | 49 CC                |
| 1254      |                          | 1315       | 1257       | 50 CC                |
| 1200      |                          | 1273       | 1205       | 12 CN, 4 CC          |
| 1035      |                          | 1091       | 1054       | 10 CC                |
|           | 1038*                    | 1088       | 1053       | 9 CC                 |
|           | 965*                     | 1003       | 977        |                      |
| 935       | 938**                    | 981        | 940        | 41 CC                |
|           |                          | 981        | 939        | 52 CC                |
| 862       | 863                      | 895        | 866        | 44 CNO, 30 CN        |
| 800       | 803                      | 822        | 799        | 81 CC                |
| 731*      |                          | 746        | 739        | 18 CC                |
| 571       | 570                      | 597        | 555        | 59 CC                |
|           | 523*                     | 546        | 525        | 32 CNO, 22 CN        |
| 376       | 777                      | 395        | 384        |                      |
| 361*      |                          | 391        | 367        | 38 CN                |
| 306*      |                          | 370        | 355        | 30 CNO               |
| 286       | 285**                    | 312        | 286        | 38 CNO, 4 CN         |
| 280*      | 273*                     | 304        | 286        |                      |
| 270*      | 260*                     | 286        | 257        |                      |
| 229*      | 223*                     | 279        | 256        |                      |
| 223*      | 218*                     | 222        | 198        |                      |
|           |                          | 42         | 40         | 75 τNO <sub>2</sub>  |

<sup>\*</sup> Spectra for the crystalline state.


cause the C—N bond, along with the C—N—O angles, contributes considerably to this frequency. The frequencies of bending vibrations change rather significantly in the spectra of the series of mononitroalkane molecules.

For example, the frequency of the nonplanar bending vibration of the nitro group ( $\rho(NO_2)$ ) increases by at least 100 cm<sup>-1</sup> on going from linear to branched molecules. The frequencies of other bending vibrations exhibit smaller changes but the modes change significantly on going from these to other molecules.

Note the change in the frequency of the torsional vibration on going from nonbranched to branched molecules. In this case, we have to use mainly calculated data not confirmed by experiment.

<sup>\*</sup> The data on the vibration modes are cumbersome and, hence, not presented.

<sup>\*\*</sup> Spectra for the liquid state.



**Fig. 4.** Diagram for the change in the frequencies of bending vibrations for the C–NO<sub>2</sub> group  $\tau$  (1),  $\delta_{as}(ONO)$  (2),  $\rho(NO_2)$  (3), and  $\delta_s(CNO)$  (4) in the series of molecules of aliphatic nitro compounds 1–6, B3LYP calculations in the 6-311++G(d,p) (1, 2, 5, 6) and 6-31G(d) (3, 4) basis sets.

The general character of changes in the frequencies of bending vibrations of the C—NO<sub>2</sub> group in the series of mononitroalkane molecules is demonstrated in Fig. 4.

In conclusion let us summarize the results of analysis of the quantum-chemical calculations compared to experiment. This study allowed us to examine in detail the spectra of mononitroalkanes. The apparent similarity observed in the spectra of different related compounds, *e.g.*, closeness of frequencies, does not always prove the similarity of their modes. Each particular case needs reliable calculations.

The authors thank I. M. Krukovskii for participation in the work.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 97-03-33712).

## References

- 1. N. I. Sadova and L. V. Vilkov, *Usp. Khim.*, 1982, **51**, 153 [*Russ. Chem. Rev.*, 1982, **51**, 87 (Engl. Transl.)].
- N. I. Sadova, L. S. Khaikin, and L. V. Vilkov, *Usp. Khim.*, 1992, 61, 2129 [*Russ. Chem. Rev.*, 1982, 61 (Engl. Transl.)].

- 3. N. I. Sadova and L. V. Vilkov, *Izv. Vuzov. Khim. Khim. Tekhnol.* [Bulletin of High Educational Institutions, Chemistry and Chemical Technology], 1992, **35**, No. 5, 81 (in Russian).
- E. A. Arnautova, T. S. Pivina, O. P. Gladkich, and L. V. Vilkov, J. Mol. Struct., 1996, 374, 137.
- G. A. Jeffrey, J. R. Rulle, L. M. Wigert, J. H. Vates, and R. K. McMullan, J. Am. Chem. Soc., 1985, 107, 6227.
- H. Schodel, R. Dienelt, and H. Bock, *Acta Crystallogr.*, 1994, C50, 1790.
- I. V. Tokmakov and V. A. Shlyapochnikov, *Izv. Akad. Nauk, Ser. Khim.*, 1997, 2106 [*Russ. Chem. Bull.*, 1997, 46, 1992 (Engl. Transl.)].
- 8. GAUSSIAN-94, Revision D.1, Pittsburgh (PA), 1995.
- 9. A. P. Cox, J. Mol. Struct., 1983, 97, 61.
- J. Ekkers, A. Bauder, and Hs. H. Günthard, *Chem. Phys. Lett.*, 1973, 22, 249.
- 11. Rodd's Chemistry of Carbon Compounds, Elsevier, Amsterdam, 1965, 1B, 94.
- J. R. Durig, I. R. Smooter-Smith, Y. S. Li, and F. M. Wasacz, J. Mol. Struct., 1983, 99, 45.
- I. V. Shishkov, N. I. Sadova, L. V. Vilkov, and Yu. A. Pankrushev, *Zh. Strukt. Khim.*, 1983, 24, 25 [*J. Struct. Chem. USSR*, 1983, 24 (Engl. Transl.)].
- P. R. R. Langridge-Smith, R. Stevens, and A. P. Cox, J. Chem. Soc., Faraday Trans. 2, 1980, 76, 330.
- J. R. Durig, F. Sun, and Y. S. Li, J. Mol. Struct., 1983, 101, 79.
- V. A. Shlyapochnikov, L. S. Khaikin, O. E. Grikina, Ch. W. Bock, and L. V. Vilkov, J. Mol. Struct., 1994, 326, 1.
- L. S. Khaikin, O. E. Grikina, V. A. Shlyapochnikov,
   L. V. Vilkov, and Ch. V. Bok, *Izv. Akad. Nauk, Ser. Khim.*,
   1995, 2135 [Russ. Chem. Bull., 1995, 44, 2039 (Engl. Transl.)].
- L. S. Khaikin, O. E. Grikina, V. I. Perevozchikov, S. S. Kramarenko, V. A. Shlyapochnikov, and J. E. Boggs, *Izv. Akad. Nauk, Ser. Khim.*, 1998, 1557 [Russ. Chem. Bull., 1998, 47, 1514 (Engl. Transl.)].
- 19. V. A. Shlyapochnikov, *Kolebatel' nye spektry alifaticheskikh nitrosoedinenii [Vibrational Spectra of Aliphatic Compounds*], Nauka, Moscow, 1989, 134 pp. (in Russian).
- K. W. F. Kohlrausch, *Ramanspektren*, Geest and Portig, Leipzig, 1943.
- P. Groner, R. Meyer, and Hs. H. Günthard, *Chem. Phys.*, 1975, 11, 63.

Received November 11, 2001; in revised form December 17, 2001